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Abstract
Penalized or sparse regression methods are gaining increasing attention in imaging genomics, as
they can select optimal regressors from a large set of predictors whose individual effects are small
or mostly zero. We applied a multivariate approach, based on L1-L2-regularized regression (elastic
net) to predict a magnetic resonance imaging (MRI) tensor-based morphometry-derived measure
of temporal lobe volume from a genome-wide scan in 740 Alzheimer’s Disease Neuroimaging
Initiative (ADNI) subjects. We tuned the elastic net model’s parameters using internal
crossvalidation and evaluated the model on independent test sets. Compared to 100,000
permutations performed with randomized imaging measures, the predictions were found to be
statistically significant (p ~ 0.001). The rs9933137 variant in the RBFOX1 gene was a highly
contributory genotype, along with rs10845840 in GRIN2B and rs2456930, discovered previously
in a univariate genomewide search.
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1. INTRODUCTION
Many early studies in imaging genetics explored univariate associations between genotypes
and imaging measures, assuming each gene acted independently. One disadvantage of such
studies is their limited statistical power to detect gene effects on the brain. Meta-analyses
such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) project
[1] have boosted statistical power, by analyzing MRI and genome-wide genotype data from
over 20,000 subjects, gaining power from very large sample sizes. Multivariate approaches,
which simultaneously consider entire sets of genotypes, sets of voxels in an image, or both,
have also become more popular [2], as they also handle potential problems in high-
dimensional data, such as highly correlated predictors, where almost all have no detectable
effects.

In [2], we reviewed several recent multivariate, imaging genetics studies that applied
principal component regression [3], sparse reduced rank regression [4], or independent
components analysis [5] to discover genetic influences on the brain that would have been
missed by using only univariate techniques. Regularized, sparse regression methods, in
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particular, use penalty terms to tackle the problems of high dimensionality (e.g., having
more predictors than samples), multiple highly correlated measures, and multiple
comparisons across an image, the genome, or both. The “elastic net” combines L1- and L2-
norm regularization and benefits from the advantages of both methods, to handle high-
dimensional, highly correlated data. The algorithm takes advantage of the sparsity properties
of L1 (Least Absolute Shrinkage and Selection Operator, or LASSO), along with the
stability of L2 (ridge) regression [6]. Here, we introduce an elastic net approach to predict an
imaging measure from top genotypes. We aim to incorporate top genetic variants (i.e., single
nucleotide polymorphisms or SNPs), screened based on univariate genome-wide search (as
in a genome-wide association analysis or GWAS), into an elastic net model, to predict
temporal lobe volume on MRI. Recently, the elastic net has been applied to genomics [7,8],
for jointly considering genetic polymorphisms as well as imaging [9], to integrate large
numbers of imaging and clinical predictors. More recently, the algorithm has also been used
to detect multi- SNP associations with hippocampal surface morphometry [10], and to
integrate imaging and proteomic data in Alzheimer’s disease [11].

We hypothesize that this doubly regularized, multivariate regression method would allow us
to make significant predictions of MRI-derived temporal lobe volume from genotypes. This
predictive approach, we propose, may have implications for early, personalized risk
assessment of brain disorders such as Alzheimer’s disease, where the temporal lobes
undergo significant atrophy.

2. METHODS
2.1. MRI Measures

ADNI subjects were scanned with a standard MRI protocol optimized for reproducibility
and consistency across 58 sites in North America. Temporal lobe volumes were derived
from an anatomically defined region-of-interest (ROI) on three-dimensional maps of relative
volumes generated with tensor-based morphometry (TBM), a well-established method to
map volumetric differences in the brain [12]. Temporal lobe volume is particularly
interesting, as this structure is prone to atrophy in Alzheimer’s disease (AD). There is
interest in discovering genes that may promote or resist the atrophy, or contribute to normal
variations in its volume. A total of 740 subjects with both imaging and genotype data were
included (173 with AD, 361 with mild cognitive impairment or MCI, and 206 cognitively
healthy controls; 438 men and 302 women; mean ± SD age: 75.55 ± 6.79 years).

2.2. Genotypes
Genotyping procedures for ADNI are described in [13]. SNPs with minor allele frequencies
less than 0.01 and Hardy-Weinberg equilibrium p-values less strict than 5.7 × 10−7 were
excluded. Genotypes were imputed to infer missing information.

2.3. Elastic net method
The elastic net [6] is a form of penalized regression, where both L1 and L2 regularizations
are introduced into the standard multiple linear regression model, as formulated below for n
subjects and p predictors:

(1)

Here, y represents the vector whose n components are the imaging measure for each subject,
after adjusting for sex and age (residuals of regression). X is the n × p matrix of genotypes
for top genetic variants across the genome. β* represents the vector of fitted regression
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coefficients for each SNP’s effect on the imaging measure. λ1 is a positive weighting
parameter on the L1 penalty, which promotes sparsity in the resulting set of fitted regression
coefficients, as many coefficients are likely to be exactly zero. λ2 is a positive weighting
parameter on the L2 penalty, which promotes stability in the regularization path and
precludes a limit on how many variables are selected (in strict LASSO, at most n variables
can be selected in an n by p case).

In ten separate experiments (Figure 1), we randomly split the data into training sets with 3n/
4 and testing sets with n/4 subjects. Standard univariate associations were performed for all
~500,000 genotyped variants with the imaging measure, using the training set only, and top
4,000 SNPs were then fed into the elastic net algorithm. This is a common pre-screening
step that has been used in similar contexts [7]. Leave-one-out cross-validation was
performed within the training sets to determine the optimal penalty parameters with the
mean squared error criterion. Both λ1 and α are optimized with a grid search, where a = λ2 /
(λ1 + λ2), such that the penalty term of (1), P, is restated as below:

(2)

Mean squared error is commonly minimized for parameter tuning using cross-validation,
similarly to previous studies in this context [10,11]. To avoid bias, cross-validation for
selecting hyperparameters is done separately from evaluation of the model. Models trained
to have optimal penalty parameters were tested on the test sets to obtain mean squared errors
for predicting the imaging measure from genotypes. For our analyses, we used the ‘glmnet’
package [14] implemented in R (http://cran.r-project.org). This optimizes model fitting
parameters via an efficient, coordinate descent algorithm.

A similar procedure was repeated 100,000 times. To reduce computational time, unlike the
actual experiments, only the optimal penalty parameters were used and a fixed set of top
4,000 SNPs from a univariate genome-wide search were incorporated into the models.
Imaging measures were randomly assigned to all subjects, after which the data was
randomly split into training and testing sets as above. Mean squared errors for prediction of
test set temporal lobe volumes were then obtained for each permutation.

Standard multiple regression cannot be used in our scenario, as the multivariate analysis for
all top SNPs would fail (i.e., the model fitting equation would be ill-conditioned), as there
are many more variants than subjects (p ≫ n problem).

To perform post-hoc, exploratory tests on our top SNPs, we created voxelwise statistical
maps to reveal the spatial profile of associations with regional brain volumes. We fitted
linear associations at each voxel, adjusted for covariates (sex and age). To correct for
multiple spatial comparisons, we used a regional False Discovery Rate (FDR) method,
which is now fairly standard in neuroimaging [15].

3. RESULTS
We averaged the mean squared errors of the optimized predictive models on test sets. An
average mean squared error of 3,147 was obtained with the elastic net predictor in
independent sets of test subjects. The average mean squared error in the 100,000
permutations was 4,257 with a standard deviation of 397. Compared to the distribution of
the errors across the permutations (Figure 2), the p-value is found to be close to 0.001.

To investigate which genetic variants contributed most to the predictions, we examined the
average absolute values of coefficients for each fitted predictor. Out of the 4,000 variants
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incorporated into the elastic net models in each of the ten trials, 105 were screened for all
trials. We investigated the coefficients obtained by these SNPs. The top ten are shown in
Table 1. To ensure that the findings were robust, we also counted the number of times the
variants received nonzero coefficients across the ten runs (Table 1). With permutations, each
SNP obtained a nonzero coefficient only about 2.0 ± 0.5 SD times, on average.

We noted that rs10845840 in the GRIN2B gene and the intergenic rs2456930, which were
the top findings with a univariate genome-wide search [16], also appeared in our top list,
which is a re-assuring validation. Interestingly, rs9933137 in the RBFOX1 gene also
obtained a very high mean |β| and outperformed the top univariate SNP in GRIN2B. To
explore the profile of effects of the RBFOX1 SNP on temporal lobes in more detail, we
performed an exploratory, post-hoc voxelwise test, shown in Figure 3.

4. CONCLUSION
We proposed a multivariate model to predict an imaging measure from genotypes, using L1-
L2 regularized regression, also known as the elastic net. We split 740 ADNI subjects into
training and test sets in ten separate trials. We optimized elastic net parameters in the
training set using leave-one-out cross-validation, and predictions were made on the
independent test sets. This is a rigorous predictive framework, as it avoids the overfitting
that can arise if training data are used for testing. We also compared the performance of our
predictor with that of 105 permutations, where MRI measures were randomly assigned to the
subjects. Our predictions were significantly better than those made by random models.
Although the main goal of our study was prediction rather than discovery, we also looked
for the variants that most strongly contributed to the predictions. Using average elastic net
coefficients as a metric, we found a single nucleotide polymorphism in the RBFOX1 gene to
be most contributory to the predictive models, which also showed significant 3D effects on
the temporal lobes. This gene, also known as A2BP1, has been previously characterized as
an autism risk gene [17], and regulates neuronal excitation in the brain [18]. Interestingly, it
has also been discovered in another sparse regression imaging genetics study as a highly
significant gene [19]. Future studies are needed to compare the performance of this predictor
with other multivariate techniques. Prescreening of genetic variants, which was done as a
way of reducing dimensionality similarly to previous studies [7], may be a limitation, as it
might lead to missing potential effects from contributory genes. Furthermore, applying
multi-voxel methods [4,5,19] and incorporating biological pathway information may yield
more statistically powerful predictions.
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Figure 1. Validation framework
Different loops of crossvalidation are necessary to prevent over-fitting of a predictive model.
We pre-screen the single nucleotide polymorphisms (SNPs) for dimension reduction, and
elastic net parameter optimization, is only performed within the training data. The mean
squared errors of predictions in 10 separate trials on independent test sets are averaged.
LOOCV = Leave-one-out cross-validation.
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Figure 2.
Distribution of mean squared errors for the 105 simulations conducted with the optimal
elastic net parameters. Errors are approximately normally distributed (mean, 4,257; SD:
397). 131 permutations had errors smaller than our predictive model’s error (red line),
yielding an empirical p-value ~ 0.001.
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Figure 3.
The post-hoc voxelwise effects of the RBFOX1 rs9933137 polymorphism are shown on
TBM-derived maps of the temporal lobes, using linear regression. Volumetric change at
each voxel is linearly regressed against the genetic variant, along with covariates such as sex
and age. P-values for the associations are corrected for multiple spatial comparisons using
regional false discovery rate (FDR). Warmer colors represent more significant effects.
Images are in radiological convention. Results survived multiple comparisons correction
across both lobes, but the left temporal lobe showed stronger effects (also seen in the left
sagittal slice). Although this does not add new information to the multivariate, prediction
study, it confirms that the highly predictive polymorphism’s diffuse effects on the temporal
lobes at a voxel-by- voxel basis.
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Table 1

List of single nucleotide polymorphisms (SNPs) with the highest contribution to the elastic net models
predicting temporal lobe volume on MRI. These ten SNPs had the largest elastic net coefficients (absolute
values), and their selection was robust, as they obtained nonzero coefficients at least 8 out of the 10 total trials.
Corresponding gene names and chromosome numbers are displayed for the variants.

SNP Gene Chr |β|average |β|>0 count

rs2456930 - 15 2.32 10

rs10518480 - 4 1.96 10

rs17476752 - 5 1.78 9

rs9933137 RBFOX1 16 1.75 8

rs10845840 GRIN2B 12 1.64 9

rs997972 - 20 1.50 9

rs1929933 GLDC 9 1.44 9

rs1564348 SLC22A1 6 1.41 9

rs309800 - 4 1.37 10

rs11204135 - 8 1.33 10
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